BACKGROUND

Medical images especially throat and endoscopy images are normally hazy, lack of focus, or uneven illumination → difficult the diagnosis process for doctors.

A method to improve the quality of medical image to support the diagnosis is essential → Deep learning-based image dehazing technique is promising to address this problem.

However, paired ground-truth training images for supervision are almost unavailable to obtain in reality.

We propose an unsupervised medical image improvement framework (MIINet) for supporting doctors in making medical diagnostic decisions.

PROPOSED METHOD

MIINet has two modules:
- Image Dehazing Module (IDM): To transform bad quality image to clean image.
- Image Super-resolution Module (ISR) (optional): To enlarge image size when doctors need to inspect more details.

- IDM is improved version of CycleGAN. ISR is adapted from ESRGAN.
- We propose the perceptual loss ($L_{perceptual}$) to preserve important attributes from original input such as structure, color, texture.

EXPERIMENTAL RESULTS

Dataset
- We collected 200 low-quality (LQ) throat images and 1,400 high-quality (HQ) throat images.
- Training IDM: 100 LQ and 100 HQ (randomly selected from 1,400 HQ images). Training ISR: 1,400 HQ images. Testing: 100 LQ images.

Evaluation metric
- Mean doctor opinion score (MDOS) based on the mean opinion score is used to evaluate the quality of throat images.
- Three experienced doctors were asked to give scores (from 1-5) for LQ, CycleGAN/MIINet generated throat images (higher is better).
- Mean doctor opinion score (MDOS) for supporting doctors in making medical diagnosis.

DISCUSSION

- CycleGAN improved a much better visual quality from LQ images but still has much lower scores in comparison with our MIINet
 - CycleGAN either changes the color or generates different structure or texture from input images.
 - CycleGAN learns to generate images that look close to the target domain (similar color) and has no mechanisms to preserve the original attributes.
 - Generated images from CycleGAN are not favorable for making medical decisions.

- MIINet are recommended to support throat diagnosis based on doctor’s feedback
 - The introduction of the perceptual loss helps the MIINet to generate compelling quality images and preserve the originality from inputs.
 - Significantly improved the MDOS from original LQ images.

- There is a trade-off of adding perceptual loss
 - In a very few cases, CycleGAN generates slightly better visual focus images than our MIINet since it has more freedom to generate close outputs to the HQ target images.

CONCLUSION & FUTURE WORKS

Conclusion
- We proposed the medical image improvement framework (MIINet) for supporting making medical diagnosis.
- We confirm the effectiveness of our MIINet for supporting doctors in image-based throat diagnosis by using the MDOS testing.
- The introduction of simple yet effective perceptual loss largely improved the quality of LQ images and achieved a promising result on the real-world throat dataset.
- Generated images from MIINet are more favorable for doctors to make their decisions.
- Our MIINet could have a potential impact on different types of medical images.

Future works
- Evaluation of MIINet is still based on subjective metric (MDOS), adding more objective metrics is important to confirm the effectiveness of our method.
- Further development on different types of medical images is needed.