" Crack Shape Reconstruction in Eddy Current Testing using Machine Learning Systems for Regression "

Authors

A. Bernieri, L. Ferrigno, M. Laracca, M. Molinara


Abstract

Nondestructive testing techniques for the diagnosis of defects in solid materials can follow three steps, i.e., detection, location, and characterization. The solutions currently on the market allow for good detection and location of defects, but their characterization in terms of the exact determination of defect shape and dimensions is still an open question. This paper proposes a method for the reliable estimation of crack shape and dimensions in conductive materials using a suitable nondestructive instrument based on the eddy current principle and machine learning system postprocessing. After the design and tuning stages, a performance comparison between the two machine learning systems [arti?cial neural network (ANN) and support vector machine (SVM)] was carried out. An experimental validation carried out on a number of specimens with different known cracks con?rmed the suitability of the proposed approach for defect characterization.


Doi :
10.1109/TIM.2008.919011                
Published in :

Download Publication

A file of this publication is available for download , for personal use only . Click on the download button and enter your email address in the box . You will receive an email with instructions to proceed to download